Pacific Science, vol. 66, no. 2 (2012)

Pacific Science Vol. 66 Issue 2
In Appreciation of Professor Dieter Mueller-Dombois
Peter Vitousek and Donald Drake, 117-118

Plant Introductions: Historical Sketches
Michael Kiehn, 119-125

Plant species, their parts, and derivatives have been transferred by humans since the beginning of history: unintentionally (e.g., with propagules adhering to clothes) or intentionally (e.g., when species or parts of them were used for food or as sources of tools). Numerous plant transfers resulted in species becoming permanently naturalized in new areas, in some cases with extremely negative effects for the region to which they were brought. However, transfers also often proved neutral or even beneficial. This article does not intend to give a comprehensive survey of the history and the consequences of plant transfers in space and time but presents and discusses illustrative examples of plant movements by people. Special emphasis is given to effects on islands and to historical, political, and economic aspects of long-distance plant trade in the Old World often little known by botanists.

The Challenge of Retarding Erosion of Island Biodiversity through Phytosanitary Measures: An Update on the Case of Puccinia psidii
in Hawai‘i

Lloyd L. Loope and Janice Y. Uchida, 127-139

Most rust fungi are highly host specific, but Puccina psidii has an extremely broad host range within Myrtaceae and gained notoriety with a host jump in its native Brazil from common guava (Psidium guajava) to commercial Eucalyptus plantations. When detected in Hawai‘i in April 2005, the first invasion outside the neotropics/subtropics, there was immediate concern for ‘ōhi‘a (Metrosideros polymorpha). ‘Ōhi‘a composes 80% of native forest statewide, providing stable watersheds and habitat for most Hawaiian forest birds and plants. Within months, rust spores spread statewide on wind currents, but ‘ōhi‘a was found to be only a minor host, showing very light damage. The primary host was nonnative rose apple (Syzygium jambos), severely affected at a landscape scale, but the epiphytotic subsided as rose apple was largely defoliated or killed within several years. The limited and stable host range in Hawai‘i (versus elsewhere) led the local conservation community to explore possibilities for excluding new genetic strains of P. psidii. Although national/international phytosanitary standards require strong scientific justification for regulations involving an infraspecific taxonomic level, hopes were buoyed when genetic studies showed no apparent genetic variation/evolution in Hawai‘i’s rust strain. A sophisticated genetic study of P. psidii in its home range is near completion; genetic variation is substantial, and host species strongly influences rust population structure. To prevent introduction of new strains, the Hawai‘i Department of Agriculture is moving ahead with establishing stringent measures that restrict entry of Myrtaceae into Hawai‘i. Meanwhile, P. psidii poses a major threat to Myrtaceae biodiversity worldwide.

Introduced Canopy Tree Species Effect on the Soil Microbial Community in a Montane Tropical Forest
Hannah B. Lynch, Kimberly Y. Epps, Tadashi Fukami, and Peter M. Vitousek, 141-150

Within a single site in the Kohala Forest Reserve, Hawai‘i, we examined composition and diversity of soil microbial communities under four introduced (Cryptomeria japonica, Casuarina equisetifolia, Araucaria columnaris, and Eucalyptus sp.) and one native (Metrosideros polymorpha) canopy tree species, as well as pasture. Terminal restriction fragment length polymorphism (T-RFLP) analysis of soil bacteria, fungi, and archaea indicated that soil under the native M. polymorpha had the highest richness and greatest number of unique terminal restriction fragments, whereas soil under Eucalyptus and in pasture sites had the lowest richness. The soil microbial community differed significantly between Eucalyptus and M. polymorpha but not between the other three introduced species and M. polymorpha. The Eucalyptus microbial community was more similar to that of an adjacent deforested pasture site than to those of other forested stands. Soil pH was the environmental variable that best correlated with the ariation in soil microbial community composition between tree species.

Beta Diversity of Tree Species along Soil-P Gradients in Tropical Montane Rain Forests of Contrasting Species Pools: Does Biodiversity Matter in Stabilizing Forest Ecosystems?
Kanehiro Kitayama, 151-160

This study concerns relationships between gamma diversity and beta diversity (species turnover) along a resource gradient. Model sites are the Hawaiian Islands, where the regional floristic species pool of tropical rain forests is much impoverished compared with Borneo, where the regional species pool is two orders of magnitude greater than in Hawai‘i. I examined the relationship between changes in percentage floristic similarity (PS) and changes in the soil P pool among pairs of plots located in these two regions. PS sharply decreased with increasing difference of soil P pool in Borneo (Mount Kinabalu), whereas PS did not significantly change with increasing difference of soil P pool in Hawai‘i. I suggest that a greater number of tree species that have high P-use efficiencies occur in Borneo due to its high gamma diversity. Stronger competitive exclusion because of the high gamma diversity will lead to displacements by species of progressively greater P-use efficiencies along a soil P gradient. Consequently, niche divisions along the soil P gradient will be formed, causing a greater beta diversity in Borneo. By contrast, a single species, Metrosideros polymorpha, monodominates the entire soil P gradient in Hawai‘i, leading to nonexistence of beta diversity along the soil P gradient. There are important implications of beta diversity for ecosystem maintenance. I suggest that a greater beta diversity can maintain forest biomass and productivity against soil P decline by providing more P-use efficient species along the gradient.

The Ahupua‘a of Puanui: A Resource for Understanding Hawaiian Rain-Fed Agriculture
Aurora K. Kagawa and Peter M. Vitousek, 161-172

Intensive rain-fed agricultural systems represented the foundation of the agricultural economies of the island of Hawai‘i and parts of Maui in the centuries before European contact. These systems largely were abandoned in the nineteenth century, and our understanding of how they functioned as productive systems is sparse. We established three experimental gardens within the ahupua‘a (traditional Hawaiian land division) of Puanui, in the Leeward Kohala Field System, where we have measured climate and soil properties and planted several Polynesian crops. We obtained relatively large yields of ‘uala (sweet potato, Ipomoea batatas) (from 1 to 4 kg of tubers per m2) from spring and summer plantings in two wetter, higher-elevation gardens; growth was slow there in the winter. In a drier, lower-elevation garden, only winter plantings provided reasonable yields (0.6 kg per m2). We suggest that Hawaiian farmers cultivated a winter crop of ‘uala in the lower, warmer, drier portion of the field system and grew spring-summer crops in the upper, wetter portion of the system. Ahupua‘a-level management in rain-fed agricultural systems could thus have functioned to integrate environmental variability and sustain yields through the year.

Biology and Impacts of Pacific Island Invasive Species. 7. The Domestic Cat (Felis catus)
David Cameron Duffy and Paula Capece, 173-212

This article reviews the biology, ecological effects, and management of the domestic cat (Felis catus) in the Pacific basin. The cat is one of the most controversial invasive species in the Pacific region because of its complex relations with humans. At one extreme, well-fed domestic house pets are allowed outdoors where they may hunt native animals; at the other, unsocialized feral cats have replaced native predators as apex predators or occupy a new niche on oceanic islands, where they have devastated native faunas. In the middle are stray cats that are still socialized around humans. Feral and stray cats can be reservoirs of diseases that infect free-roaming domestic cats, humans, and wildlife. Given these problems, the best response would be to keep domestic cats indoors, restrict cat breeding, and remove feral populations. However, most Pacific basin societies have failed to reach a consensus on the cat problem, so solutions are ad hoc, often lacking in any scientific basis, and reflect our conflicting views. Compromise management might best fall into three broad classes: (1) eradication of cats should be confined to islands and other areas of high native biodiversity where reintroduction can be prevented; (2) in a landscape of low or moderate biological value, efforts should be made to educate the public to reduce the impact of their cats on remaining wildlife, while excluding cats from “islands” of elevated biodiversity values or human sensitivity; (3) in drastically simplified urban ecosystems, management perhaps should occur only in response to local complaints.

Mikania micrantha Kunth (Asteraceae) (Mile-a-Minute): Its Distribution and Physical and Socioeconomic Impacts in Papua New Guinea
M. D. Day, A. Kawi, K. Kurika, C. F. Dewhurst, S. Waisale, J. Saul-Maora, J. Fidelis, J. Bokosou, J. Moxon, W. Orapa, K. A. D. Senaratne, 213-223

Mikania micrantha or mile-a-minute is regarded as a major invasive weed in Papua New Guinea (PNG) and is now the target of a biological control program. As part of the program, distribution and physical and socioeconomic impacts of M. micrantha were studied to obtain baseline data and to assist with field release of biological control agents. Through public awareness campaigns and dedicated surveys, M. micrantha has been reported in all 15 lowland provinces. It is particularly widespread in East New Britain, as well as in West New Britain and New Ireland. A CLIMEX model suggests that M. micrantha has the potential to continue to spread throughout all lowland areas in PNG. The weed was found in a wide range of land uses, impacting on plantations and food gardens and smothering papaya, young cocoa, banana, taro, young oil palms, and ornamental plants. In socioeconomic surveys, M. micrantha was found to have severe impacts on crop production and income generated through reduced yields and high weeding costs, particularly in subsistence mixed cropping systems. About 89% of all respondents had M. micrantha on their land, and 71% of respondents had to weed monthly. Approximately 96% of respondents in subsistence mixed cropping systems used only physical means of control compared with 68% of respondents in other farming systems. About 45% of all respondents estimated that M. micrantha causes yield losses in excess of 30%. These studies suggest that there would be substantial benefits to landholders if biological control of M. micrantha were to be successful.

Lizards of Tonga with Description of a New Tongan Treeskink (Squamata: Scincidae: Emoia samoensis Group)
George R. Zug, Ivan Ineich, Gregory Pregill, and Alison M. Hamilton, 225-237

The present-day vertebrate fauna of Tonga contains 17 species of lizards from three families: Gekkonidae, Iguanidae, and Scincidae. Are any of these lizard species members of a fauna before humans arrived? This question is examined and partially resolved. Endemic taxa, such as Lepidodactylus euaensis, Emoia adspersa, and E. tongana, are likely inhabitants whose ancestors arrived, before the arrival of humans, via waif dispersal and subsequently differentiated in isolation. Recognition of these species is essential to interpret correctly the evolutionary history of the Tongan herpetofauna. The largest surviving Tongan skink previously has been identified incorrectly as a population of the Fijian Emoia trossula lineage. It is not and, herein, is differentiated from Emoia trossula and other central Pacific members of the Emoia samoensis species group and subgroup. Emoia mokolahi Zug, Ineich, Pregill & Hamilton, n. sp., differs from its sister taxa in the Emoia samoensis species subgroup by body size, dorsal and digital scalation, and coloration.

A New Member of the Bavayia cyclura Species Group (Reptilia: Squamata: Diplodactylidae) from the Southern Ranges of New Caledonia
Aaron M. Bauer, Ross A. Sadlier, Todd R. Jackman, and Glenn Shea, 239-247

A new species of diplodactylid gecko, Bavayia nubila Bauer, Sadlier, Jackman & Shea, n. sp., is described from forests at two sites in the drainage of the Tontouta Valley in the ultramafic ranges of southeastern New Caledonia. The new gecko is the sister species of the much smaller Bavayia goroensis; both species are basal within the B. cyclura clade. The area from which the species is recorded so far is the focus of extensive nickel mining operations, and because of its restricted distribution and the potential threats posed by mining in the region, it is here regarded as Endangered under IUCN red list criteria.

Association Affairs
249

UH Press
Privacy Overview

University of Hawaiʻi Press Privacy Policy

WHAT INFORMATION DO WE COLLECT?

University of Hawaiʻi Press collects the information that you provide when you register on our site, place an order, subscribe to our newsletter, or fill out a form. When ordering or registering on our site, as appropriate, you may be asked to enter your: name, e-mail address, mailing 0address, phone number or credit card information. You may, however, visit our site anonymously.
Website log files collect information on all requests for pages and files on this website's web servers. Log files do not capture personal information but do capture the user's IP address, which is automatically recognized by our web servers. This information is used to ensure our website is operating properly, to uncover or investigate any errors, and is deleted within 72 hours.
University of Hawaiʻi Press will make no attempt to track or identify individual users, except where there is a reasonable suspicion that unauthorized access to systems is being attempted. In the case of all users, we reserve the right to attempt to identify and track any individual who is reasonably suspected of trying to gain unauthorized access to computer systems or resources operating as part of our web services.
As a condition of use of this site, all users must give permission for University of Hawaiʻi Press to use its access logs to attempt to track users who are reasonably suspected of gaining, or attempting to gain, unauthorized access.

WHAT DO WE USE YOUR INFORMATION FOR?

Any of the information we collect from you may be used in one of the following ways:

To process transactions

Your information, whether public or private, will not be sold, exchanged, transferred, or given to any other company for any reason whatsoever, without your consent, other than for the express purpose of delivering the purchased product or service requested. Order information will be retained for six months to allow us to research if there is a problem with an order. If you wish to receive a copy of this data or request its deletion prior to six months contact Cindy Yen at [email protected].

To administer a contest, promotion, survey or other site feature

Your information, whether public or private, will not be sold, exchanged, transferred, or given to any other company for any reason whatsoever, without your consent, other than for the express purpose of delivering the service requested. Your information will only be kept until the survey, contest, or other feature ends. If you wish to receive a copy of this data or request its deletion prior completion, contact [email protected].

To send periodic emails

The email address you provide for order processing, may be used to send you information and updates pertaining to your order, in addition to receiving occasional company news, updates, related product or service information, etc.
Note: We keep your email information on file if you opt into our email newsletter. If at any time you would like to unsubscribe from receiving future emails, we include detailed unsubscribe instructions at the bottom of each email.

To send catalogs and other marketing material

The physical address you provide by filling out our contact form and requesting a catalog or joining our physical mailing list may be used to send you information and updates on the Press. We keep your address information on file if you opt into receiving our catalogs. You may opt out of this at any time by contacting [email protected].

HOW DO WE PROTECT YOUR INFORMATION?

We implement a variety of security measures to maintain the safety of your personal information when you place an order or enter, submit, or access your personal information.
We offer the use of a secure server. All supplied sensitive/credit information is transmitted via Secure Socket Layer (SSL) technology and then encrypted into our payment gateway providers database only to be accessible by those authorized with special access rights to such systems, and are required to keep the information confidential. After a transaction, your private information (credit cards, social security numbers, financials, etc.) will not be stored on our servers.
Some services on this website require us to collect personal information from you. To comply with Data Protection Regulations, we have a duty to tell you how we store the information we collect and how it is used. Any information you do submit will be stored securely and will never be passed on or sold to any third party.
You should be aware, however, that access to web pages will generally create log entries in the systems of your ISP or network service provider. These entities may be in a position to identify the client computer equipment used to access a page. Such monitoring would be done by the provider of network services and is beyond the responsibility or control of University of Hawaiʻi Press.

DO WE USE COOKIES?

Yes. Cookies are small files that a site or its service provider transfers to your computer’s hard drive through your web browser (if you click to allow cookies to be set) that enables the sites or service providers systems to recognize your browser and capture and remember certain information.
We use cookies to help us remember and process the items in your shopping cart. You can see a full list of the cookies we set on our cookie policy page. These cookies are only set once you’ve opted in through our cookie consent widget.

DO WE DISCLOSE ANY INFORMATION TO OUTSIDE PARTIES?

We do not sell, trade, or otherwise transfer your personally identifiable information to third parties other than to those trusted third parties who assist us in operating our website, conducting our business, or servicing you, so long as those parties agree to keep this information confidential. We may also release your personally identifiable information to those persons to whom disclosure is required to comply with the law, enforce our site policies, or protect ours or others’ rights, property, or safety. However, non-personally identifiable visitor information may be provided to other parties for marketing, advertising, or other uses.

CALIFORNIA ONLINE PRIVACY PROTECTION ACT COMPLIANCE

Because we value your privacy we have taken the necessary precautions to be in compliance with the California Online Privacy Protection Act. We therefore will not distribute your personal information to outside parties without your consent.

CHILDRENS ONLINE PRIVACY PROTECTION ACT COMPLIANCE

We are in compliance with the requirements of COPPA (Children’s Online Privacy Protection Act), we do not collect any information from anyone under 13 years of age. Our website, products and services are all directed to people who are at least 13 years old or older.

ONLINE PRIVACY POLICY ONLY

This online privacy policy applies only to information collected through our website and not to information collected offline.

YOUR CONSENT

By using our site, you consent to our web site privacy policy.

CHANGES TO OUR PRIVACY POLICY

If we decide to change our privacy policy, we will post those changes on this page, and update the Privacy Policy modification date.
This policy is effective as of May 25th, 2018.

CONTACTING US

If there are any questions regarding this privacy policy you may contact us using the information below.
University of Hawaiʻi Press
2840 Kolowalu Street
Honolulu, HI 96822
USA
[email protected]
Ph (808) 956-8255, Toll-free: 1-(888)-UH-PRESS
Fax (800) 650-7811