Pacific Science, vol. 60, no. 3 (2006)

BioOne logoThis issue is available in Project Muse and in BioOne.2

Conservation Value of Remnant Forest Patches: Tree Composition, Spatial Patterns, and Recruitment in the Ottoville Lowland Forest, American Samoa
Joshua O. Seamon, Sheri S. Mann, Orlo C. Steele, and Ruth C. B. Utzurrum
pp. 319–332

Abstract: Native forests increasingly have been reduced to remnant fragments on many Pacific islands. Island and continental ecosystems differ in a number of ways that may increase conservation value of such forest fragments on islands. However, few studies have examined performance of tree populations in Polynesian forest fragments. We tested potential conservation value of the largest contiguous patch of lowland lava flow forest on Tutuila, American Samoa, by determining uniqueness, potential vulnerability, and possible viability of the tree community therein. We recorded 1,186 trees ≥ 10 cm dbh (diameter at breast height) from 37 species in 12 transects (each 10 m wide) running from edge to edge across the forest, as well as 1,332 seedlings and 991 saplings within 62 miniplots (each 25 m2). Locations within the forest of all 462 trees ≥ 30 cm dbh, of the 10 most dominant species, were then plotted. The most dominant tree species was Pometia pinnata. Similarity indices between the study site and other protected forests on Tutuila were very low. Spatial distributions and abundances of adult trees, as well as the dispersed distribution of seedlings and saplings, suggested low vulnerability to spatially discrete disturbances. We found evidence of potential edge effects in seedling distributions of two species. Abundances of seedlings and saplings indicated a high potential for continued recruitment of characteristic tree species. Species composition of these recruits is largely composed of characteristic primary forest species rather than secondary forest or invasive species. These results show that even very small forest fragments may have substantial value for conservation, because they can combine high within-island uniqueness with a relatively high likelihood of persistence if left undisturbed.

Composition and Structure of Lowland Rain-Forest Tree Communities on Ta‘u, American Samoa
Edward L. Webb, Martin van de Bult, Wanlop Chutipong, and Md. Enamul Kabir
pp. 333–354
Abstract: This study examined the composition and structure of tropical rain forest in four permanent plots on the island of Ta‘u, American Samoa. Two 1-ha plots were established in coastal forest, one in an abandoned coastal cultivation site (a “plantation” ca. 17 yr post-abandonment) and another in a Dysoxylum samoense–dominated coastal forest. Two 2-ha plots were established in lowland forest at 200–250 m elevation, one in an abandoned plantation (ca. 13 yr post-abandonment) and the other in less-disturbed mid- to late-secondary mixed lowland forest. In the total 6 ha, we encountered 54 tree species, with Dysoxylum samoense the most dominant species overall and abundant in all four plots. The upper forest plot was the most diverse plot and exhibited low similarity with any of the other three plots. This plot exhibited a rarefaction curve similar to those of four lowland hill forest plots on Tutuila but was most similar in composition to regenerating disturbed forest on Tutuila rather than mature, less-disturbed forest. Low similarity was found between the two Dysoxylum-dominated coastal forests and the Dysoxylum-Pometia–dominated Ottoville lava flow forest on Tutuila. By examining the populations of D. samoense across the four plots we found an impact of agriculture and cyclones on height structure of the forest. Examination of species’ diameter class distributions allowed us to propose several hypotheses related to the life histories of several tree species. We documented the natural establishment of the introduced species Flueggea flexuosa into both abandoned plantations and natural forest. Monitoring these plots over time will allow us to better understand successional processes in natural and human-impacted forest including changes in composition, structure, relative abundance of nonnative species, as well as the impact of cyclones on different forest types.

Colonization of Nishino-shima Island by Plants and Arthropods 31 Years after Eruption
Tetsuto Abe
pp. 355–365
Abstract: Although many researchers have studied colonization, the process has rarely been observed on newly emerged oceanic islands. To describe the colonization process of a remote oceanic island, I investigated the flora, vegetation, and pollinators of Nishino-shima Island 31 yr after a major eruption in 1973. Nishino-shima Island, which is 22 ha in size, is located 1,000 km south of mainland Japan. Vegetation cover had increased, especially on new lowland area, since a preliminary survey done 10 yr after the eruption, but plant species richness remained poor (only six species). Thus, the plant colonization rate (0.10 species/yr) was far slower than that of other volcanic islands such as Krakatau. Most plants (four species) had ocean-dispersed seeds, but two species were likely dispersed via attachment to seabirds. Despite colonization by only a few plant species, there were abundant flower visitors including ants, bugs, a butterfly, and a fly ( but no bee species), and the average visitation rate per flower was 5.5 visits/12 hr in total observations. Most of the insects used multiple food sources, concurrently acting as scavengers or herbivores.

Influence of Propagule Flotation Longevity and Light Availability on Establishment of Introduced Mangrove Species in Hawai‘i
James A. Allen and Ken W. Krauss
pp. 367–376
Abstract: Although no mangrove species are native to the Hawaiian Archipelago, both Rhizophora mangle and Bruguiera sexangula were introduced and have become naturalized. Rhizophora mangle has spread to almost every major Hawaiian island, but B. sexangula has established only on O‘ahu, where it was intentionally introduced. To examine the possibility that differences in propagule characteristics maintain these patterns of distribution, we first reviewed the literature on surface currents around the Hawaiian Islands, which suggest that propagules ought to disperse frequently from one island to another within 60 days. We then tested the ability of propagules of the two species to float for periods of up to 63 days and to establish under two light intensities. On average, R. mangle propagules floated for longer periods than those of B. sexangula, but at least some propagules of both species floated for a full 60 days and then rooted and grew for 4 months under relatively dense shade. A large percentage (~83%) of R. mangle propagules would be expected to float beyond 60 days, and approximately 10% of B. sexangula propagules also would have remained afloat. Therefore, it seems likely that factors other than flotation ability are responsible for the failure of B. sexangula to become established on other Hawaiian islands.

Current Extent and Historical Expansion of Introduced Mangroves on O‘ahu, Hawai‘i
Rodney A. Chimner, Brian Fry, Mahealani Y. Kaneshiro, and Nicole Cormier
pp. 377–383
Abstract: In Hawai‘i, mangrove trees are introduced species that can rapidly colonize many nearshore environments. Mangroves have been introduced on O‘ahu, and Rhizophora mangle in particular has created numerous problems that have led to several mangrove removals and increased interest in long-term management of mangroves. The objective of this project was to quantify current locations of mangroves and their historical rate of expansion on O‘ahu. We used the Geographic Information System (GIS) to map mangroves from digitized air photographs from six time periods: 1951–1953, 1963–1965, 1978, 1982, 1991, and 2001. We found that mangroves are still expanding at a rapid rate on O‘ahu 80 yr after their introduction. Mangroves have colonized many different landforms, including tidal flats, riverbanks, fishponds, canals, protected reefs, embayments, lagoons, and other protected areas. Currently, mangroves are widely distributed and occur on all coasts except the dry leeward coast and occupy a total of 147 ha. Roughly 70% (102 ha) of all mangroves occur in Pearl Harbor.

Population Dynamics of Marsilea villosa (Marsileaceae) on O‘ahu, Hawai‘i
Lyndon Wester, John Delay, Lam Hoang, Byron Iida, Nicholas Kalodimos, and Tamara Wong
pp. 385–402
Abstract: Marsilea villosa Kaulfuss is an endemic Hawaiian fern with a very small, fragmented natural range and an ephemeral habit that makes it difficult to assess population health. Its sporocarps are presumed to remain viable for many years, allowing it to survive periods of drought and then sexually reproduce when there is sufficient precipitation to cause them to be submerged in standing water. Surveys of plant cover at ‘Ihi‘ihilauākea Crater, where the largest and best-protected stand was located, have shown that vigorous growth of the species occurs after the crater floor is flooded. This study documents dramatic decline over the last 8 yr, during which growth has been largely vegetative. Analyses of rainfall records suggest that events producing long-duration floods occur on average every 6.5 yr, yet 13 yr have elapsed since the last one. Although this may in part explain the poor condition of the population, other ecological changes have occurred including decline of the dominant trees and invasion of alien grasses that may influence flooding frequency. Marsilea villosa may be able to avoid extinction because flooding caused by rare climatic events will kill off the competitors that have encroached on its former ecological space. However, it is predicted to be a less-conspicuous part of the ecosystem most of the time unless management can effectively suppress invaders.

A New Eastern Limit of the Pacific Flying Fox, Pteropus tonganus (Chiroptera: Pteropodidae), in Prehistoric Polynesia: A Case of Possible Human Transport and Extirpation
Marshall I. Weisler, Robert Bollt, and Amy Findlater
pp. 403–411
Abstract: Five bones, representing one adult of the Pacific Flying Fox, Pteropus tonganus, were recovered from an archaeological site on Rurutu (151° 21′ W, 22° 27′ S), Austral Islands, French Polynesia, making this the most eastern extension of the species. For the first time, flying fox bones from cultural deposits were directly dated by accelerator mass spectrometry, yielding an age of death between A.D. 1064 and 1155. Their stratigraphic position in an Archaic period archaeological site and the absence of bones in the late prehistoric to historic layers point to extirpation of the species. No flying fox bones were found in prehuman deposits and human transport of the species cannot be ruled out.

Ants (Hymenoptera: Formicidae) of Niue, Polynesia
James K. Wetterer
pp. 413–416
Abstract: Niue is a single isolated island in Polynesia. Based on reexamination of specimens from an earlier study and unpublished specimen data, I removed three erroneous records from the list of known ants from Niue (Paratrechina flavipes, Pheidole mus, and Tetramorium bicarinatum), corrected one name (Monomorium liliuokalanii instead of Monomorium monomorium), and added one new species record (Vollenhovia samoensis). Of the 33 ant species I report from Niue, 18 are Indo-Pacific natives and 15 are exotics. The ant fauna of Niue is almost entirely a subset of the fauna of neighboring Tonga and Samoa. Of the ant species native to the Indo-Pacific region found in Niue, only one was not also known from both Tonga and Samoa. Most or all of the other 17 species seem likely to be native to Niue (i.e., predating human arrival). This is particularly apparent for a local endemic species, V. samoensis, which was once considered to be a Samoan endemic but is now also known from Tonga and Niue.

First Record of Brachiopods from the Marquesas Islands, French Polynesia, South Central Pacific
Maria Aleksandra Bitner
pp. 417–424
Abstract: Two species of Recent brachiopods, Eucalathis cf. murrayi and Frenulina sanguinolenta, have been identified in the collection from the Musorstom 9 Expedition to the Marquesas Islands in 1997. They represent the first record of brachiopods from the Marquesas Islands. Both species previously have been reported from the western Pacific, and F. sanguinolenta is also known from Hawai‘i in the North Central Pacific. Presence of these species in the Marquesas extends the eastern boundary of their biogeographic range. The brachiopods from the Marquesas show very low diversity when compared with the fauna from the western Pacific, as well as with that from the Hawaiian Islands. This decrease in number of species in the Pacific from west to east is also observed in other benthic invertebrate groups.

Association Affairs
Pacific Science Association
pp. 425–428

UH Press
Privacy Overview

University of Hawaiʻi Press Privacy Policy

WHAT INFORMATION DO WE COLLECT?

University of Hawaiʻi Press collects the information that you provide when you register on our site, place an order, subscribe to our newsletter, or fill out a form. When ordering or registering on our site, as appropriate, you may be asked to enter your: name, e-mail address, mailing 0address, phone number or credit card information. You may, however, visit our site anonymously.
Website log files collect information on all requests for pages and files on this website's web servers. Log files do not capture personal information but do capture the user's IP address, which is automatically recognized by our web servers. This information is used to ensure our website is operating properly, to uncover or investigate any errors, and is deleted within 72 hours.
University of Hawaiʻi Press will make no attempt to track or identify individual users, except where there is a reasonable suspicion that unauthorized access to systems is being attempted. In the case of all users, we reserve the right to attempt to identify and track any individual who is reasonably suspected of trying to gain unauthorized access to computer systems or resources operating as part of our web services.
As a condition of use of this site, all users must give permission for University of Hawaiʻi Press to use its access logs to attempt to track users who are reasonably suspected of gaining, or attempting to gain, unauthorized access.

WHAT DO WE USE YOUR INFORMATION FOR?

Any of the information we collect from you may be used in one of the following ways:

To process transactions

Your information, whether public or private, will not be sold, exchanged, transferred, or given to any other company for any reason whatsoever, without your consent, other than for the express purpose of delivering the purchased product or service requested. Order information will be retained for six months to allow us to research if there is a problem with an order. If you wish to receive a copy of this data or request its deletion prior to six months contact Cindy Yen at [email protected].

To administer a contest, promotion, survey or other site feature

Your information, whether public or private, will not be sold, exchanged, transferred, or given to any other company for any reason whatsoever, without your consent, other than for the express purpose of delivering the service requested. Your information will only be kept until the survey, contest, or other feature ends. If you wish to receive a copy of this data or request its deletion prior completion, contact [email protected].

To send periodic emails

The email address you provide for order processing, may be used to send you information and updates pertaining to your order, in addition to receiving occasional company news, updates, related product or service information, etc.
Note: We keep your email information on file if you opt into our email newsletter. If at any time you would like to unsubscribe from receiving future emails, we include detailed unsubscribe instructions at the bottom of each email.

To send catalogs and other marketing material

The physical address you provide by filling out our contact form and requesting a catalog or joining our physical mailing list may be used to send you information and updates on the Press. We keep your address information on file if you opt into receiving our catalogs. You may opt out of this at any time by contacting [email protected].

HOW DO WE PROTECT YOUR INFORMATION?

We implement a variety of security measures to maintain the safety of your personal information when you place an order or enter, submit, or access your personal information.
We offer the use of a secure server. All supplied sensitive/credit information is transmitted via Secure Socket Layer (SSL) technology and then encrypted into our payment gateway providers database only to be accessible by those authorized with special access rights to such systems, and are required to keep the information confidential. After a transaction, your private information (credit cards, social security numbers, financials, etc.) will not be stored on our servers.
Some services on this website require us to collect personal information from you. To comply with Data Protection Regulations, we have a duty to tell you how we store the information we collect and how it is used. Any information you do submit will be stored securely and will never be passed on or sold to any third party.
You should be aware, however, that access to web pages will generally create log entries in the systems of your ISP or network service provider. These entities may be in a position to identify the client computer equipment used to access a page. Such monitoring would be done by the provider of network services and is beyond the responsibility or control of University of Hawaiʻi Press.

DO WE USE COOKIES?

Yes. Cookies are small files that a site or its service provider transfers to your computer’s hard drive through your web browser (if you click to allow cookies to be set) that enables the sites or service providers systems to recognize your browser and capture and remember certain information.
We use cookies to help us remember and process the items in your shopping cart. You can see a full list of the cookies we set on our cookie policy page. These cookies are only set once you’ve opted in through our cookie consent widget.

DO WE DISCLOSE ANY INFORMATION TO OUTSIDE PARTIES?

We do not sell, trade, or otherwise transfer your personally identifiable information to third parties other than to those trusted third parties who assist us in operating our website, conducting our business, or servicing you, so long as those parties agree to keep this information confidential. We may also release your personally identifiable information to those persons to whom disclosure is required to comply with the law, enforce our site policies, or protect ours or others’ rights, property, or safety. However, non-personally identifiable visitor information may be provided to other parties for marketing, advertising, or other uses.

CALIFORNIA ONLINE PRIVACY PROTECTION ACT COMPLIANCE

Because we value your privacy we have taken the necessary precautions to be in compliance with the California Online Privacy Protection Act. We therefore will not distribute your personal information to outside parties without your consent.

CHILDRENS ONLINE PRIVACY PROTECTION ACT COMPLIANCE

We are in compliance with the requirements of COPPA (Children’s Online Privacy Protection Act), we do not collect any information from anyone under 13 years of age. Our website, products and services are all directed to people who are at least 13 years old or older.

ONLINE PRIVACY POLICY ONLY

This online privacy policy applies only to information collected through our website and not to information collected offline.

YOUR CONSENT

By using our site, you consent to our web site privacy policy.

CHANGES TO OUR PRIVACY POLICY

If we decide to change our privacy policy, we will post those changes on this page, and update the Privacy Policy modification date.
This policy is effective as of May 25th, 2018.

CONTACTING US

If there are any questions regarding this privacy policy you may contact us using the information below.
University of Hawaiʻi Press
2840 Kolowalu Street
Honolulu, HI 96822
USA
[email protected]
Ph (808) 956-8255, Toll-free: 1-(888)-UH-PRESS
Fax (800) 650-7811